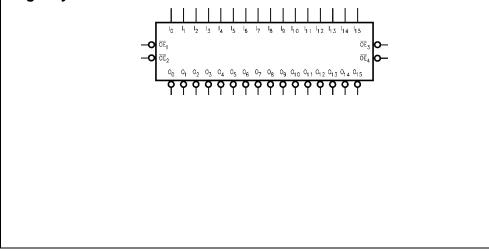
74LVT16240 • 74LVTH16240 Low Voltage 16-Bit Inverting Buffer/Line Driver with 3-STATE Outputs

General Description


Features

- Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH16240), also available without bushold feature (74LVT16240)
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Functionally compatible with the 74 series 16240
- Latch-up performance exceeds 500 mA
- ESD performance: Human-body model > 2000V Machine model > 200V

Ordering Code:

Order Number 74LVT16240MEA 74LVT16240MTD 74LVT16240MTD 74LVTH16240MEA 74LVTH16240MTD	Number MS48A MTD48 MS48A MTD48 ape and Reel. Specify	48-Lead Thin Shrink 48-Lead Small Shrinl	Coutline Package (SSOP), JEDEC MO-118, 0.300" Wide Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			
Order Number 74LVT16240MEA 74LVT16240MTD 74LVTH16240MEA	MS48A MTD48 MS48A	48-Lead Thin Shrink 48-Lead Small Shrinl	Outline Package (SSOP), JEDEC MO-118, 0.300" Wide			
Order Number 74LVT16240MEA 74LVT16240MTD	MS48A MTD48	48-Lead Thin Shrink	3			
Order Number 74LVT16240MEA	MS48A		48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			
Order Number		48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide				
J	Package		Package Description			
Ordering Co	de:		Charged-device model > 1000V			
technology to achiev ABT while maintainin		peration similar to 5V ssipation.	Human-body model > 2000V Machine model > 200V			
LVTH16240 are fab	ricated with an	advanced BiCMOS	■ ESD performance:			
		The LVT16240 and	■ Latch-up performance exceeds 500 mA			
		signed for low-voltage capability to provide a	Functionally compatible with the 74 series 16240			
nputs.			bus loading ■ Outputs source/sink –32 mA/+64 mA			
	•	bushold, eliminating tors to hold unused	■ Power Up/Down high impedance provides glitch-free			
for 8-bit or 16-bit ope			Live insertion/extraction permitted			
transmitter/receiver. 7	The device is nib	Iriver, or bus-oriented ble controlled. h be shorted together	Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH16240), also available without bushold feature (74LVT16240)			
buffers with 3-STATE	outputs designe	ed to be employed as	5V V _{CC}			
	•	tain sixteen inverting	Input and output interface capability to systems at			
General Des	crintion		Features			
-	ge 16-B	•	Buffer/Line Driver			
741 1/74 00	40 - 741					
SEMICONDUC	CTORIM					

Logic Symbol

Connection Diagram							
$\overline{OE}_{1} - OC = OC$	Diagram 1 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39	- OE2 - I0 - I1 - GND - I2 - I3 - VCC - I4 - I5 - GND					
$\begin{array}{c} 0_{6} \\ 0_{7} \\ 0_{8} \\ 0_{9} \\ 0_{9} \\ 0_{9} \\ 0_{10} \\ 0_{10} \\ 0_{10} \\ 0_{11} \\ 0_{12} \\ 0_{12} \\ 0_{13} \\ 0_{14} \\ 0_{15} \\ 0_$	11 38 11 38 12 37 13 36 14 35 15 34 16 33 17 32 18 31 19 30 20 29 21 28 22 27 23 26 24 25	$ \begin{bmatrix} -1_{6} \\ -1_{7} \\ -1_{8} \\ -1_{9} \\ -1_{10} \\ -1_{11} \\ -1_{11} \\ -1_{12} \\ -1_{13} \\ -1_{14} \\ -1_{15} \\ -\overline{OE}_{3} $					

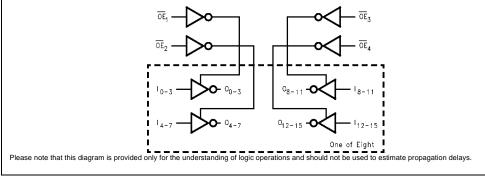
Pin Descriptions

Pin Names	Description
OEn	Output Enable Inputs (Active LOW)
I ₀ -I ₁₅	Inputs
$\overline{O}_0 - \overline{O}_{15}$	3-STATE Outputs

Truth Table

Ing	outs	Outputs
OE ₁	I ₀ —I ₃	$\overline{O}_0 - \overline{O}_3$
L	L	Н
L	Н	L
н	х	Z
Ing	outs	Outputs
OE ₂	I ₄ —I ₇	$\overline{O}_4 - \overline{O}_7$
L	L	Н
L	Н	L
н	х	Z
Ing	outs	Outputs
OE ₃	I ₈ –I ₁₁	0 ₈ -0 ₁₁
L	L	Н
L	Н	L
н	х	Z
Ing	outs	Outputs
OE ₄	I ₁₂ –I ₁₅	0 ₁₂ -0 ₁₅
L	L	Н
L	н	L
н	х	Z

H = HIGH Voltage Level


L = LOW Voltage Level

X = Immaterial Z = High Impedance

Functional Description

The LVT16240 and LVTH16240 contain sixteen inverting buffers with 3-STATE standard outputs. The device is nibble (4-bits) controlled with each nibble functioning identically, but independent of the other. The control pins may be shorted together to obtain full 16-bit operation. The 3-STATE outputs are controlled by an Output Enable (\overline{OE}_n) input for each nibble. When \overline{OE}_n is LOW, the outputs are in 2-state mode. When \overline{OE}_n is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Logic Diagram

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 2)	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{ОК}	DC Output Diode Current	-50	V _O < GND	mA
lo	DC Output Current	64	V _O > V _{CC} Output at HIGH State	
		128	V _O > V _{CC} Output at LOW State	mA
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH Level Output Current		-32	mA
I _{OL}	LOW Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 2: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics

				Τ _Α	=-40°C to +	85°C			
Symbol	Parameter		V _{CC} (V)	Min	Typ (Note 10)	Мах	Units	Conditions	
V _{IK}	Input Clamp Diode Vo	ltage	2.7			-1.2	V	I _I = -18 mA	
V _{IH}	Input HIGH Voltage		2.7–3.6	2.0			V	$V_0 \le 0.1V$ or	
V _{IL}	Input LOW Voltage		2.7–3.6			0.8	V	$V_O \ge V_{CC} - 0.1V$	
V _{OH}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2				I _{OH} = -100 μA	
			2.7	2.4			V	I _{OH} = -8 mA	
			3.0	2.0				I _{OH} = -32 mA	
V _{OL}	Output LOW Voltage		2.7			0.2		I _{OL} = 100 μA	
		-	2.7			0.5		I _{OL} = 24 mA	
			3.0			0.4	V	I _{OL} = 16 mA	
			3.0			0.5		I _{OL} = 32 mA	
			3.0			0.55		I _{OL} = 64 mA	
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75			μA	V _I = 0.8V	
(Note 4)				-75			μ	V ₁ = 2.0V	
I _{I(OD)}	Bushold Input Over-D	rive	3.0	500			^	(Note 5)	
(Note 4)	Current to Change Sta	ate		-500			μA	(Note 6)	
I _I	Input Current		3.6			10		V _I = 5.5V	
		Control Pins	3.6			±1	μA	$V_I = 0V$ or V_{CC}	
		Data Pins	3.6			-5	μΑ	$V_I = 0V$	
		Data FIIIS	3.6			1		$V_I = V_{CC}$	
I _{OFF}	Power Off Leakage C	urrent	0			±100	μA	$0V \leq V_I \text{ or } V_O \leq 5.5V$	
I _{PU/PD}	Power Up/Down 3-ST	ATE	0–1.5V			±100	uА	V _O = 0.5V to 3.0V	
	Output Current		0-1.5V			±100	μΑ	$V_I = GND \text{ or } V_{CC}$	
l _{ozl}	3-STATE Output Leak	age Current	3.6			-5	μA	$V_{O} = 0.5V$	
I _{OZH}	3-STATE Output Leak	age Current	3.6	1	İ	5	μA	V _O = 3.0V	

DC Electrical Characteristics (Continued)

		v	Τ ₄	, =−40°C to +	B5°C		
Symbol	Parameter	V _{CC} (V)	Min	Typ (Note 10)	Мах	Units	Conditions
I _{OZH} +	3-STATE Output Leakage Current	3.6			10	μA	$V_{CC} < V_O \le 5.5 V$
I _{CCH}	Power Supply Current	3.6			0.19	mA	V _I = GND or V _{CC} , Outputs HIGH
I _{CCL}	Power Supply Current	3.6			5	mA	V _I = GND or V _{CC} , Outputs LOW
I _{CCZ}	Power Supply Current	3.6			0.19	mA	V _I = GND or V _{CC} , Outputs Disabled
I _{CCZH+}	Power Supply Current	3.6			0.19	mA	$\label{eq:V_cc} \begin{split} V_I &= GND \text{ or } V_{CC}, \\ V_{CC} &\leq V_O \leq 5.5V, \\ Outputs \text{ Disabled} \end{split}$
ΔI_{CC}	Increase in Power Supply Current (Note 7)	3.6			0.2	mA	One Input at V _{CC} – 0.6V Other Inputs at V _{CC} or GNI

Note 3: All typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$.

Note 4: Applies to bushold versions only (LVTH16240).

Note 5: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 6: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 8)

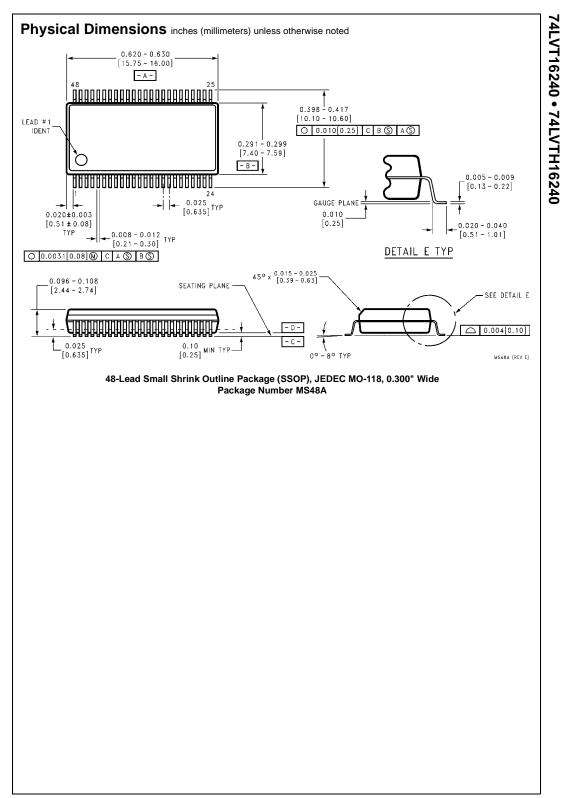
Symbol	Parameter	V _{cc}	$T_A = 25^{\circ}C$			Units	Conditions
Symbol	Falameter	(V) Min		Тур	Max	Units	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 9)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 9)

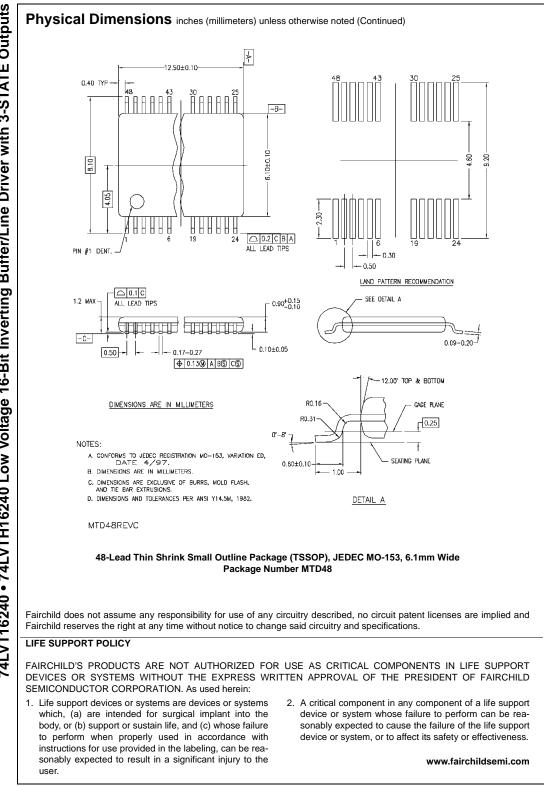
Note 8: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 9: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output at LOW.

AC Electrical Characteristics

			Γ _A = -40°C to +85°	C, C _L = 50 p	F, R _L = 5009	2	
Symbol	Parameter		$V_{CC}=3.3V\pm0.3V$	V _{cc}	Units		
	Farameter	Min	Тур	Max	Min	Max	Units
			(Note 10)				
t _{PLH}	Propagation Delay Data to Output	1.0		3.5	1.0	4.2	
t _{PHL}		1.0		3.5	1.0	4.0	ns
t _{PZH}	Output Enable Time	1.0		4.0	1.0	4.9	
t _{PZL}		1.2		4.8	1.2	6.1	ns
t _{PHZ}	Output Disable Time	1.7		4.7	1.7	5.2	ns
t _{PLZ}		1.7		4.2	1.7	4.4	115
t _{OSHL}	Output to Output Skew			1.0		1.0	ns
t _{OSLH}	(Note 11)						


Note 10: All typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C.


Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units				
C _{IN}	Input Capacitance	$V_{CC} = 0V, V_I = 0V \text{ or } V_{CC}$	4	pF				
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V, V_O = 0V \text{ or } V_{CC}$	8	pF				
Note 12. Capacitan	Note 12: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012							

ency Hz, per MIL-ST -883, Metho

www.fairchildsemi.com

6